旨在确定吸烟与肺癌相关生物标志物的遗传网络与基因集富集分析

Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer
作者:Fang, X.a , Netzer, M.b , Baumgartner, Fang, X.a ,
机构: 复旦大学附属中山医院呼吸内科
期刊: CANCER TREAT REV2013年2月1期39卷

Objectives: Cigarette smoking is the most demonstrated risk factor for the development of lung cancer, while the related genetic mechanisms are still unclear. Methods: The preprocessed microarray expression dataset was downloaded from Gene Expression Omnibus database. Samples were classified according to the disease state, stage and smoking state. A new computational strategy was applied for the identification and biological interpretation of new candidate genes in lung cancer and smoking by coupling a network-based approach with gene set enrichment analysis. Measurements: Network analysis was performed by pair-wise comparison according to the disease states (tumor or normal), smoking states (current smokers or nonsmokers or former smokers), or the disease stage (stages I-IV). The most activated metabolic pathways were identified by gene set enrichment analysis. Results: Panels of top ranked gene candidates in smoking or cancer development were identified, including genes involved in cell proliferation and drug metabolism like cytochrome P450 and WW domain containing transcription regulator 1. Semaphorin 5A and protein phosphatase 1F are the common genes represented as major hubs in both the smoking and cancer related network. Six pathways, e.g. cell cycle, DNA replication, RNA transport, protein processing in endoplasmic reticulum, vascular smooth muscle contraction and endocytosis were commonly involved in smoking and lung cancer when comparing the top ten selected pathways. Conclusion: New approach of bioinformatics for biomarker identification and validation can probe into deep genetic relationships between cigarette smoking and lung cancer. Our studies indicate that disease-specific network biomarkers, interaction between genes/proteins, or cross-talking of pathways provide more specific values for the development of precision therapies for lung. © 2012 Elsevier Ltd.

通讯作者:Wang, X.; Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai 200032, China; email:xiangdong.wang@telia.com
学科代码:肿瘤学   关键词:吸烟与肺癌
来源: Scopus
Scopus介绍:Scopus 于2004年11月正式推出,是目前全球规模最大的文摘和引文数据库。Scopus涵盖了由5000多家出版商出版发行的科技、医学和社会科学方面的18,000多种期刊,其中同行评审期刊16,500多种。相对于其他单一的文摘索引数据库而言,Scopus的内容更加全面,学科更加广泛,特别是在获取欧洲及亚太地区的文献方面,用户可检索出更多的文献数量。通过Scopus,用户可以检索到1823年以来的近4000万条摘要和题录信息,以及1996年以来所引用的参考文献。数据每日更新。 马上访问Scopus网站http://www.scopus.com/
顶一下(0
您可能感兴趣的文章
    发表评论网友评论(0)
      发表评论
      登录后方可发表评论,点击此处登录