胶质细胞表达的力敏感通道TRPV4可介导次声波诱导性神经元损伤

Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment
作者:Shi, M.a , Du, F.a, Liu, Y.a, Li, L.a, Cai, J.a, Zhang, G.-F.a, Xu, X.-F.a, Lin, T.a, Cheng, H.-R.b, Liu, X.-D.a, Xiong, L.-Z.c, Zhao, G.a
机构: 第四军医大学西京医院神经内科
期刊: ACTA NEUROPATHOL2013年11月5期126卷

 

Abstract

Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca2+-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7-14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca2+ influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment.

通讯作者:Shi, M.; Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; email:biomidas@fmmu.edu.cn
学科代码:神经外科学 病理学   关键词:Shi M.; Department of Neurology Xijing Hospital Fourth Military Medical Univer Xi'an 710032 China; email:biomidas@fmmu.edu
来源: Scopus
Scopus介绍:Scopus 于2004年11月正式推出,是目前全球规模最大的文摘和引文数据库。Scopus涵盖了由5000多家出版商出版发行的科技、医学和社会科学方面的18,000多种期刊,其中同行评审期刊16,500多种。相对于其他单一的文摘索引数据库而言,Scopus的内容更加全面,学科更加广泛,特别是在获取欧洲及亚太地区的文献方面,用户可检索出更多的文献数量。通过Scopus,用户可以检索到1823年以来的近4000万条摘要和题录信息,以及1996年以来所引用的参考文献。数据每日更新。 马上访问Scopus网站http://www.scopus.com/
顶一下(0
您可能感兴趣的文章
    发表评论网友评论(0)
      发表评论
      登录后方可发表评论,点击此处登录